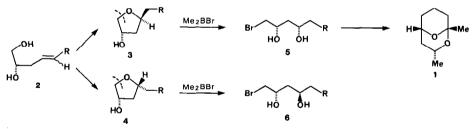
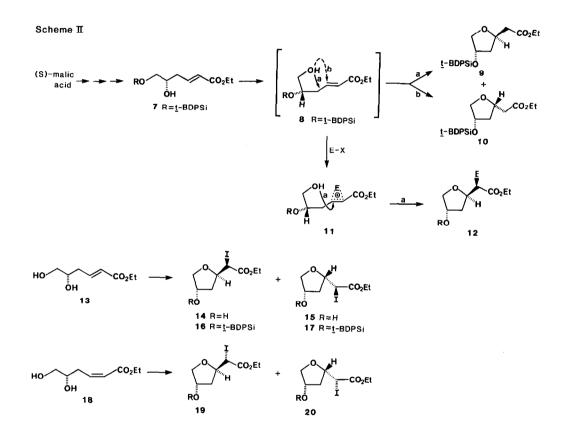
Tetrahedron Letters, Vol.27, No.11, pp 1237-1240, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain

SYNTHETIC UTILITY OF CHIRAL TETRAHYDROFURANS: PREPARATION OF (1R.3R.5S)-1,3-DIMETHYL-2,9-DIOXABICYCLO[3.3.11NONANE


Yvan Guindon, Yves St. Denis 1, Sylvain Daigneault 1 and Howard E. Morton *

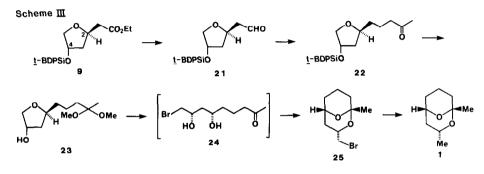
Merck Frosst Canada Inc. P.O. Box 1005, Pointe Claire-Dorval, Quebec, Canada H9R 4P8

Abstract: The use of the iodoetherification reaction for the selective preparation of optically active trans-2,4-disubstituted tetrahydrofurans and the use of the latter compounds as precursors of $\underline{syn}-1$, 3-diols is exemplified in the synthesis of (1R, 3R, 5S) - Endo-1, 3-Dimethyl-2, 9-Dioxabicyclo [3.3.1] nonane(1).


Optically active 1,3-diols are important and useful synthons in the synthesis of natural products.² The present paper describes an approach to the stereoselective synthesis of a 1.3-diol equivalent and its application in the synthesis of optically active (1R,3R,5S)-Endo-1,3-dimethy)-2,9-dioxabicyclo[3.3.1]nonane 1, a biologically interesting host-specific substance.³

Scheme I

Our approach to the synthesis of 1,3-diols (Scheme I) is based on the following: a) transformation of a simple chiral precursor bearing one asymmetric hydroxyl group into a stereochemically well defined trans-(or cis-)2,4-disubstituted tetrahydrofuran; b) subsequent ring opening at the least hindered carbon-atom in the tetrahydrofuran would then result in the formation of the desired syn-(or anti-)1,3-diol. It should be noted that this process results in the stereocontrolled formation of a new chiral center. In order to optimize the viability of this approach, an efficient method for the synthesis of 2,4-disubstituted tetrahydrofurans was sought.⁴ As described previously, exposure of 7 to base (cat. NaOEt, EtOH, reflux) afforded a mixture of isomeric cyclic ethers $\underline{9}$ and $\underline{10}$ (87%) in a ratio of 2:1.⁵ Under milder conditions (0°C, 2.5h) the cis-isomer 10 predominated (9 to 10, 1:1.7). Although 10 can be recycled to 9.⁶ a more stereoselective preparation of the <u>trans</u>-isomer <u>9</u> was desired. As


shown in Scheme II, the kinetically favored <u>cis</u>-isomer <u>10</u> results from nucleophilic attack on the <u>si</u>-face of <u>8</u> (path b), addition to the <u>re</u>-face (path a) affords the thermodynamically more stable <u>trans</u>-isomer <u>9</u>. This suggested that if the same kinetic face (<u>si</u>-face) of the Michael acceptor were to be the site of attack by an electrophile (E-X) in a bimolecular reaction process, it could be possible to control the stereochemistry of the cyclization reaction. Subsequent intramolecular nucleophilic attack of the hydroxyl group in <u>11</u> on the <u>re</u>-face would then result in the formation of the <u>trans</u>-ester <u>12</u>.

Treatment of <u>13</u> with iodine (5.0 equiv.) in the presence of solid NaHCO₃ (3.0 equiv., THF, 0°C., 6h) gave a 4.8:1 mixture of the α -iodo esters <u>14</u> and <u>15</u> in excellent yield (87%). Even more impressive was the ratio of <u>14</u> and <u>15</u> (8.5 to 1, respectively) when the reaction (0°C, 24h) was performed in ether (73%). These mixtures were silvlated (<u>tBDPSi-C1</u>, <u>iPr₂NEt</u>, DMAP, CH₂Cl₂) and the products then separated by flash chromatography.⁷ Gratifyingly, treatment of <u>16</u> with <u>nBu₃SnH</u> (AIBN, hexane, reflux) resulted in clean reduction of the iodine to produce <u>9</u> in excellent yield (93%).⁸

Although iodoetherification has been used previously for the synthesis of substituted tetrahydrofurans, 9 to our knowledge the present work is the first example in which an iodoetherification reaction has been used to establish a 2,4-disubstituted tetrahydrofuran with

high <u>trans</u> stereoselectivity. It should be noted that due to the presence of the Michael acceptor this reaction proceeded in a completely regioselective fashion, and none of the corresponding tetrahydropyran was obtained. ^{9b,c} Interestingly, the geometry of the olefin did not effect the stereochemical preference for the <u>trans</u>-tetrahydrofuran. ^{9c} Thus, treatment of the less readily available <u>cis</u>-alcohol <u>18</u>¹⁰ with iodine in ether (0°C, 24h) followed by silylation of the crude reaction mixture gave the α -iodo esters <u>19</u> and <u>20</u> (R=<u>tBDPSi</u>) in a ratio of greater than 7 to 1, respectively. Furthermore, compounds <u>16</u>, <u>17</u>, <u>19</u> and <u>20</u> were stereochemically homogeneous with respect to the newly formed carbon-iodine bond. ^{11,12}

Having established a useful method for the selective preparation of <u>trans</u>-2,4-disubstituted tetrahydrofurans we proceeded to transform <u>9</u> into the bicyclic ketal <u>1</u>, 1^3 (Scheme III).

Reduction of <u>9</u> (DIBA1-H, toluene, -78°C) afforded the aldehyde <u>21</u> (72%) along with a small amount of the corresponding alcohol. Wittig reaction ($Ph_3PCHCOCH_3$, CH_2Cl_2 , room temperature, 18h) and subsequent hydrogenation (H_2 , 10% Pd/C, EtOH) then gave the ketone <u>22</u> (85%), $[\alpha]_D$ +20.0° (c 1.1, CHCl_3). Protection of the ketone as its dimethyl acetal¹⁴ (dry HCl, MeOH, (MeO)₃CH) and desilylation (<u>nBu_4NF</u>) cleanly afforded the ketal alcohol 23.¹⁵

Completion of our synthetic strategy now depended on the crucial ring opening of the tetrahydrofuran moiety. Towards this end, we have developed a powerful new reagent, dimethylboron bromide, with predictable SN₂ reactivity for the regiocontrolled cleavage of a variety of carbon-oxygen bonds.¹⁶ Treatment of <u>23</u> with dimethylboron bromide (4.0 equiv, CH_2Cl_2 . 0°C to room temperature) in the presence of diisopropylethylamine (1.1 equiv.) effected cleavage of both the dimethyl ketal and the cyclic ether to directly afford after work-up (aqueous NaHCO₃-Et₂O) the volatile bromo-bicyclic ketal <u>25</u> (53%). Presumably the reaction intermediate corresponding to <u>24</u> underwent ketalization during work-up. Reduction (<u>nBu₃SnH, AIBN, hexane reflux</u>) then gave the bicyclic ketal <u>1</u> (76%), [a] _D -35.2°. (c 0.3, pentane), lit.^{13a} [a]_D -37.3°.

In summary, the iodoetherification reaction has been used for the stereoselective synthesis of a <u>trans</u>-2,4-disubstituted tetrahydrofuran. The utility of the latter compound as a masked chiral 1,3-diol was exemplified in the efficient synthesis of optically active $(1R,3R,5S)-\underline{Endo}-(\underline{1})$.

ACKNOWLEDGEMENT: A Natural Sciences and Engineering Research Council of Canada Industrial Research Fellowship (to H.E.M.) is gratefully acknowledged. The authors would like to thank Dr. J.Rokach for his constant support and collaboration.

REFERENCES:

- 1. Undergraduate Research Participant Université de Sherbrooke, Sherbrooke, Quebec, Canada.
- T. Nakata, S. Takao, M. Fukui, T. Tanaka and T. Oishi, <u>Tetrahedron Lett.</u>, <u>24</u>, 3873 (1983) and references cited therein.
- Compound <u>1</u> was first isolated from Norway spruce infested by the ambrosia beetle (<u>Trypodendrum lineatum Oliv.</u>, see (a) V. Heemans and W. Francke, <u>Naturwiss</u>, 6<u>3</u>, 344 (1976); (b) J.P. Vite and W.Francke, <u>ibid.</u>, <u>63</u>, 550 (1976).
 Previously we have shown that chiral tetrahydrofurans are important precursors to a variety
- Previously we have shown that chiral tetrahydrofurans are important precursors to a variety of chiral acyclic molecules; see (a) Y. Guindon, R. Zamboni, C.-K. Lau and J. Rokach, <u>Tetrahedron Lett.</u>, <u>23</u> 739 (1982); (b) J. Rokach, C.-K. Lau, R. Zamboni and Y. Guindon, <u>Tetrahedron Lett.</u>, <u>22</u>, 2763 (1981).
- 5. Y. Guindon, C. Yoakim, M. A. Bernstein and H. E. Morton, <u>Tetrahedron Lett.</u>, <u>26</u>, 1185 (1985).
- 6. Equilibration of either pure <u>9</u> or <u>10</u> with base (NaOEt, EtOH, reflux 5h) afforded a 2:1 mixture of <u>9</u> and <u>10</u>, respectively. Longer reaction times failed to increase the ratio of the trans-product <u>9</u>.
- 7. The $\underline{cis/trans}$ stereochemical assignments were unambiguously determined using ²H nOe. M.A. Bernstein, H.E. Morton and Y. Guindon, manuscript submitted (1985).
- 8. Treatment of <u>13</u> with Hg(OAc)₂ in CH₂Cl₂ followed by demercuration (NaBH₄, EtOH; see F. H. Gouzoules and R. A. Whitney, <u>Tetrahedron Lett.</u>, <u>26</u>, 3441 (1985)) and silylation gave <u>9</u> and <u>10</u> in a ratio of 4:1, respectively. The use of PhSeC1 was much less effective for the cyclization reaction.
- 9. Recently, several reports have appeared on the use of the haloetherification reaction for the steroselective preparation of 1,5-cis-a and 2,3-cis-b substituted tetrahydrofurans. The high selectivity observed in these reactions presumably results from 1,2-steric interactions in the developing transition state of the ring closure^{a,c} or by 1,2-hydroxyl direction in the cyclization of allylic diols^{b,d}. (a)S. D. Rychnovsky and P. A. Bartlett, <u>J. Amer. Chem. Soc.</u>, <u>103</u>, 3963, (1981).(b)Y. Tamaru, S.-i. Kawamura and Z.-i.Yoshida, <u>Tetrahedron Lett.</u>, <u>26</u>, 2885, (1985);(c)F. Freeman and K. D. Robarge, <u>Tetrahedron Lett.</u>, <u>26</u>, 1943 (1985);(d)D. R. Williams and F. H. White, <u>ibid.</u>, <u>26</u>, 2529 (1985).
- 10. This compound was obtained as a minor component during the preparation of 7.
- 11. Based on the mechanistic considerations of the iodoetherification reaction the
- stereochemistries at the acyclic carbon atoms of <u>16</u>, <u>17</u>, <u>19</u> and <u>20</u> were assigned as shown. 12. The factors responsible for the high <u>trans</u>-stereoselectivity are currently under
- investigation in our laboratories.
 13. The absolute stereochemistry of 1 is as yet unknown. For previous syntheses of the (1R,3R,5S)- isomer see (a) H. Redlich, B.Schneider, R. W. Hoffmann, and K. J. Geueke, Liebigs Ann Chem, 393 (1983); (b) T. Nakata, S. Nagao, S. Takao, T. Tanaka and T. Oishi, Tetrahedron Lett., 26, 73 (1985) and references cited therein.
 14. Reaction of the unprotected ketone 22 with Me2BBr afforded rearrangement products. The
- 14. Reaction of the unprotected ketone <u>22</u> with Me₂BBr afforded rearrangement products. The dimethylketal was chosen as the protecting group on the basis that it would undergo cleavage with Me₂BBr to give the corresponding a-bromo ether which upon work-up, would afford the ketone: see ref. 16b and c.
- afford the ketone; see ref. 16b and c. 15. The reactivity of Me₂BBr is very sensitive to steric factors. Therefore the bulky silyl protecting group was removed to improve the regiochemistry of the opening.
- 16. (a) Y. Guindon, C. Yoakim and H. E. Morton, <u>Tetrahedrom Lett.</u>, <u>24</u> 2969 (1983); (b) Y. Guindon H. E. Morton and C. Yoakim, <u>ibid.</u>, <u>24</u> 3969 (1983); (c) Y. Guindon, C. Yoakim and H. E. Morton, <u>J. Org. Chem.</u>, <u>49</u> 3912 (1984).

(Received in USA 21 November 1985)